We fit the kinetic data to obtain the rate constants and number of amide hydrogens in three groups: fast, intermediate and proteins and peptides. This property of aggregation of insulin affects its solubility and, thus, its use in the body. The sequence of human insulin is, B chain, 30 residues and a basic B chain with 30 residues) linked together by two disulfide bridges. It exists in pancreas as hexamers and in the blood as dimers. The large size of the hexamer hinders its absorption into the blood stream. Hexamers are, therefore, broken into dimers by the liver. We see different charged species representing various oligomers of r-human insulin, suggesting that the various oligomers are present simultaneously. We also measured the rates and extent of exchange as a function of time for various insulins.

We performed H/D exchange at neutral pH to study the slow amide hydrogens. We measured the extent of exchange on insulin mutants as a function of time for various insulins (Figure 3). The number of deuteriums taken up for r-human insulin decreases gradually with concentration, suggesting increasing protection from exchange with concentration. Lispro, on the other hand, has a high hexamerization constant explaining its slower/more persistent property.

The number of deuteriums taken up for r-human insulin decreases gradually with concentration, suggesting increasing protection from exchange with concentration. Lispro, on the other hand, has a high hexamerization constant explaining its slower/more persistent property.

We also measured the rates and extent of exchange as a function of time for various insulins (Figure 3). The number of deuteriums taken up for r-human insulin decreases gradually with concentration, suggesting increasing protection from exchange with concentration. Lispro, on the other hand, has a high hexamerization constant explaining its slower/more persistent property.

We also measured the rates and extent of exchange as a function of time for various insulins (Figure 3). The number of deuteriums taken up for r-human insulin decreases gradually with concentration, suggesting increasing protection from exchange with concentration. Lispro, on the other hand, has a high hexamerization constant explaining its slower/more persistent property.